FDA Perspective on Glycemic Control and Glucose Meters

Arnold O. Beckman Conference
San Diego, CA
April 13, 2011

Courtney C. Harper, Ph.D.
Office of In Vitro Diagnostic Device Evaluation and Safety
Center for Devices and Radiological Health/FDA
courtney.harper@fda.hhs.gov
Glycemic Control

- Van den Berghe (2001)
 - Landmark TGC study
 - Mortality benefit in SICU
 - 80 – 110 mg/dL target
 - More hypoglycemia
 - POC blood gas analyzers,

- NICE-SUGAR (2009)
 - Increase in mortality in TGC group
 - No specified testing or patient management method
Glycemic Control

Why the difference?
What to do about it?

• Need accurate blood glucose measurement
 • What technology to use?
 • New technologies coming?

• More information better? (trends)
Blood glucose measurement technologies:

- Point of Care Blood glucose meters/devices
- Continuous/Near continuous measurement
- Next steps / Patient needs
There are multiple technologies currently used to measure blood glucose at the patient bedside:

- Small tabletop instruments (blood gas analyzers, etc.)
- Handheld (non-strip based) meters
- Over the Counter blood glucose meters
Standards for Clearance - POC

Small tabletop instruments - (blood gas analyzers, etc.)
Handheld (non-strip based) meters

- Evaluated like lab instruments (accuracy, precision, etc.)
- Testing performed in POC setting, by POC operators
Standards for Clearance - BGMS

- **Precision**
- **Linearity**
- **Interferences**
 - Endogenous substances (bilirubin, uric acid, etc.)
 - Drugs
 - Hematocrit, etc. etc.

- **Accuracy**
 - ISO 15197 (2003) - accuracy criteria *for Home Use meters*
 - ~100-150 samples tested
 - +/- 20% in samples >75 mg/dL glucose, +/- 15 mg/dL in samples <75 mg/dL glucose

- **Lay User studies**
 - Accuracy in the hands of lay users (within ISO 15197 criteria)-100 subjects
 - Labeling is evaluated for reading level (7th grade)
 - Human factors are considered in the review
BGMS Issues

- Meters assessed/cleared for OTC use – used in hospitals
 - Standards set for home use, no standards for other use
 - Currently no way to distinguish OTC from professional use
 - Automatically waived when OTC (no studies required)

- Studies are not sized to assess true field performance ("outliers" represent millions of tests)

- Little data gathered for hypoglycemic range

- Use in contraindicated populations (e.g., ICU, DKA)

- Use on multiple patients – risk of infection/transmission

- Limited hematocrit range (e.g., 20-60%, 30-55%)
Hospital BGMS – What is needed?

• Studies should be sized to assess true field performance

• The acceptable number of “outliers” should be well-defined and risk-based

• Additional data should be available for the hypoglycemic range

• Precision and accuracy should be evaluated in the intended use population to get realistic performance estimates
 - Use in different hospitalized populations should be assessed (e.g., ICU, DKA)
 - Accurate hematocrit range should reflect hospital population
 - Interference from common drugs/conditions should be well understood

• Meters should be designed/evaluated to reduce risk of infection/transmission
Intended use: Continuous (or near-continuous) measurement of blood glucose in hospitalized patients (esp. in ICU) to better enable glycemic control protocols

Potential benefit:

- Provide near real time data
- Can give trend information – more useful?
- Alarms can be designed for crisis avoidance
Design Considerations – Hospital CGMs

Performance
How low (or high) do these really need to go (quantitatively)?

Sterility
- Indwelling – sensor sterility/biocompatibility
- External – system sterility
- Use on multiple patients – risk of infection/transmission (reusable parts?)

Anticoagulants
- If needed, how much returned to patient?
- Clinical considerations?

Calibration solutions
- If used, contact with patient?
- Regulatory – drug safety potential
Glycemic Control

What is needed to achieve safe and effective glucose measurement that is:

- Accurate
- Reliable
- Economical
- Convenient
- Safe
- etc...?
How accurate do hospital meters need to be?

ISO 15197 (+/- 20% (or +/-15mg/dL below 75mg/dL))
- Standard intended for **home use glucose meters**
- **NOT** accurate enough for hospital use/GC protocols

Recent audience poll at DTS Hospital Diabetes Meeting:
within 10% from reference value
Accuracy

How accurate do hospital meters need to be?

Considerations:

• BGMS and CGM currently not as accurate as lab methods
• What range(s) of glucose concentrations most critical?
• How to assess accuracy in intended use population?
• No result better than wrong result? Acceptable error frequency?
How accurate do hospital meters need to be?

How to analyze the data?

- **Portable meters:**
 - Point accuracy to reference / total error

- **Continuous / Near-continuous:**
 - Point accuracy may not be good enough
 - Other ways to evaluate safety?
 - Clinical measures/parameters?
 - Clinically-based analytical limits?
 - Frequency of clinically significant differences?
How to facilitate development of new devices designed for hospital protocols?

Incremental development?

- If CGM devices not accurate enough yet, would trend information (without quantitative values) be better than nothing?
 - No glucose concentration given (trend graphs only)?
 - Dosing based on lab value, new device informs testing?

- What functionality needed first/most urgently?
Interferences

Technology:
- Established technology (e.g., glucose oxidase) – must address known interferences
- New technology – need full and complete assessment of interference potential

Intended Use Population:
- Clinical conditions, e.g., DKA
- Blood gases/acidity
- Drugs
- Relevant hematocrit range
- Altitude

Endogenous substances:
- Bilirubin
- Hemoglobin
- Albumin
- Immune system components, etc.
Clinical Evaluation

Safe Trial Design

First step = Feasibility data (for CGMs)
- Animal studies
- Healthy diabetics – get wider blood glucose range
- Evaluate adverse events (infections, clots, etc)

Next – Study in ICU/hospital population

Evaluate:
- Accuracy / Total Error in intended use population
 - Challenge = enough data in hypoglycemic range?
- Interferences
- Calibration frequency
- Measurement stability
- Failure rate
- Human factors
- Use in POC setting
Summary

• More accurate, more convenient devices needed to enable effective glycemic control protocols

• May need incremental improvements over time to enable faster access

• May need new approaches to data evaluation to assess safety and effectiveness of these devices
Questions?

courtney.harper@fda.hhs.gov
301-796-5458