
Requests for copies of this publication may be directed to:

Blood and Tissue Resources Program
New York State Department of Health
Wadsworth Center
Empire State Plaza
P.O. Box 509
Albany, New York 12201-0509

Telephone: (518) 485-5341
Fax: (518) 485-5342
E-mail: btraxess@health.state.ny.us
Website: www.wadsworth.org/labcert/blood_tissue
NEW YORK STATE
COUNCIL ON HUMAN BLOOD AND TRANSFUSION SERVICES

Membership Roster - 2004

Dennis Galanakis, M.D., Chairperson
Director, Blood Bank
SUNY Health Science Center at
 Stony Brook
Stony Brook, New York

Lazaro Rosales, M.D.
Deputy Director, Blood Bank
SUNY Health Science Center at
 Syracuse
Syracuse, New York

Robert Dracker, M.D.
Medical Director
North Area Pediatrics, and
Infusacare Medical Services
North Syracuse, New York

Donna Skerrett, M.D.
Associate Director
Transfusion Service
New York Presbyterian Hospital
Columbia-Presbyterian Medical Center
New York, New York

William Fricke, M.D.
Director, Transfusion Service
Director, Hematology Laboratory
Rochester General Hospital
Rochester, New York

David Wuest, M.D.
Director
Blood Bank and Transfusion Service
Memorial Sloan-Kettering Cancer Center
New York, New York

Alicia Gomensoro-Garcia, M.D.
Director, Blood Bank
Maimonides Medical Center
Brooklyn, New York

Antonia C. Novello, M.D., M.P.H., Dr.P.H.
(Ex-officio)
Commissioner
New York State Department of Health
Albany, New York

Gloria Rochester
President
Queens Sickle Cell Advocacy Network
St. Albans, New York

Jeanne V. Linden, M.D., M.P.H.
Executive Secretary
Director, Blood and Tissue Resources
New York State Department of Health
Wadsworth Center
Albany, New York
NEW YORK STATE
COUNCIL ON HUMAN BLOOD AND TRANSFUSION SERVICES

BLOOD SERVICES COMMITTEE

Membership Roster - 2004

Lazaro Rosales, M.D., Chairperson
Deputy Director, Blood Bank
SUNY Health Science Center at Syracuse
Syracuse, New York

Visalam Chandrasekaran, M.D.*
Chief, Division of Blood Banking
Long Island Jewish Medical Center
New Hyde Park, New York

William Fricke, M.D.*†
Director, Transfusion Service
Director, Hematology Laboratory
Rochester General Hospital
Rochester, New York

Elizabeth S. Gloster, M.D.*
Director, Blood Bank
Kings County Hospital Center, and SUNY Health Science Center at Brooklyn
Brooklyn, New York

Kathleen Grima, M.D.*
Director, Clinical Services
New York Blood Center
White Plains, New York

Joanna Heal, M.D.
Associate Medical Director
American Red Cross Blood Services
Rochester, New York

Randy Levine, M.D.
Director, Blood Bank
Lenox Hill Hospital
New York, New York

Jeanne V. Linden, M.D., M.P.H.
Director, Blood and Tissue Resources
New York State Department of Health
Wadsworth Center
Albany, New York

Helen Richards, M.D.
Director of Laboratories
Harlem Hospital Center
New York, New York

Joan Uehlinger, M.D.
Director, Blood Bank
Montefiore Medical Center
Bronx, New York

† Guideline Working Group Chairperson

* Member, Guideline Working Group
INTRODUCTION

Plasma is the liquid, non-cellular portion of blood, and contains water, electrolytes and proteins. Several types of plasma are available for transfusion. All contain coagulation proteins, but in different relative amounts. With rare exceptions, they are all used in treating patients with coagulation deficits.

The usual initial plasma dose for coagulation deficits is 10 - 20 mL/kg, which usually amounts to four to eight units of plasma in an adult. Patients who are actively bleeding or who have consumption of coagulation factors (disseminated intravascular coagulation, or DIC) may require larger doses or repeated treatments. Whenever large volumes of plasma are administered, consideration must be given to the patient’s cardiovascular system ability to adapt to the volume load.

When plasma is given prophylactically prior to invasive procedures, the timing of administration should take into account the half-life of the coagulation factor(s) in need of replacement.

I. FRESH FROZEN PLASMA

A. Description

Fresh frozen plasma (FFP) is plasma frozen within six to eight hours of collection (depending on the anticoagulant used), and stored at minus 18 degrees Celsius or lower for up to one year. FFP is prepared either by separation from whole blood or collection via plasmapheresis. A single FFP component unit usually consists of 200 - 300 mL, whereas a plasmapheresis unit may vary from 200 mL to several times that amount. FFP contains all known coagulation and anticoagulant proteins in concentrations found in normal individuals.

B. Indications

1. Prophylaxis associated with invasive procedures in non-bleeding patients with acquired coagulation defects.

Plasma is appropriate for nonbleeding patients who are at significant risk for bleeding (e.g., due to liver disease) in association with invasive procedures, in association with prolonged coagulation test results, generally prothrombin time
(PT) and/or activated partial thromboplastin time (aPTT) greater than 1.5 times the mean of the reference range. Abnormal coagulation tests *per se* are not invariably indications for FFP. Therapy should be tailored to each specific patient. In addition to any deficiencies, inhibitors should be considered as well.

2. Emergency surgery in a non-bleeding patient on warfarin with a PT greater than 1.5 times the mean of the reference range, whenever time does not permit warfarin-induced factor deficiency reversal with vitamin K. Concurrent administration of vitamin K should be considered depending on the urgency of the case and the specific clinical situation.

3. Prophylaxis in non-bleeding patients with known hereditary coagulation abnormalities.

 Plasma is appropriate for non-bleeding patients with a known, single coagulation factor deficiency for which no specific factor concentrate is available and who are at significant risk for bleeding related to an invasive procedure. Plasma may also be appropriate for non-bleeding patients with a personal or family history of bleeding associated with invasive procedures.

4. Bleeding patients with acquired multiple coagulation factor deficiencies.

 Such patients may include those with liver disease, DIC, trauma, massive transfusion or other medical conditions, as well as those receiving warfarin or similar anticoagulants.

5. Bleeding patients with known, hereditary coagulation factor deficiencies.

 Plasma should be limited to patients for whom clotting factor concentrates are not available.

6. Thrombotic thrombocytopenic purpura (TTP) or other thrombotic microangiopathy (*e.g.*, hemolytic uremic syndrome or HELLP syndrome).

7. Rare indications

 a. factor XIII deficiency, as an alternative to cryoprecipitate;

 b. prophylactic or therapeutic replacement of anticoagulant proteins (*e.g.*, antithrombin, protein C, protein S) whenever specific concentrates are not available; and

 c. CI esterase inhibitor deficiency (life-threatening hereditary angioedema).
II. OTHER PLASMA COMPONENTS

A. Description

1. Liquid Plasma: Plasma prepared from whole blood. It is stored unfrozen at between one and six degrees Celsius, and can be transfused up to five days after the expiration date of the whole blood. Liquid plasma may contain reduced amounts of factors V and VIII.

 Plasma prepared from outdated whole blood contains higher concentrations of potassium and ammonia than plasma initially prepared as FFP.

2. Thawed Plasma: FFP prepared in a closed system, but not transfused within 24 hours after thawing. It can be stored between one and six degrees Celsius and used up to five days after thawing. Thawed plasma may contain reduced amounts of factors V and VIII.

3. Plasma Frozen Within 24 Hours after Phlebotomy: Plasma stored between one and six degrees Celsius, frozen within 24 hours after phlebotomy, and transfused either immediately or up to five days after thawing. If not administered within 24 hours of thawing, such plasma may contain reduced amounts of factors V and VIII.

4. Plasma Cryoprecipitate Reduced (Cryo-poor plasma): Plasma from which cryoprecipitate has been removed. It is deficient in fibrinogen, factors VIII and XIII, and von Willebrand factor.

 Note: Each of the plasma components above must be labeled or relabeled prior to storage.

B. Indications for Other Plasma Components

These components have indications similar to those for FFP, including both congenital and acquired deficiencies of the stable clotting factors (including II, VII, IX, X, XI, and XIII), if specific factor concentrates are unavailable or inappropriate.

III. SITUATIONS IN WHICH FFP AND LIQUID PLASMA ARE NOT INDICATED

A. for patients with abnormal coagulation tests due to clotting factor deficiencies, coagulation factor inhibitors, or heparin;

B. for volume expansion;

C. as a nutritional supplement or protein source;

D. prophylactically in massive transfusion in the absence of documented coagulopathy;
E. prophylactically following cardiopulmonary bypass;

F. to promote wound healing; and

G. for patients with hypoglobulinemia.

IV. SPECIAL CONSIDERATIONS

A. Upon completion of thawing, FFP should be either transfused immediately, or stored at between one and six degrees Celsius. When it is administered as a source of labile coagulation factors, FFP should be transfused within 24 hours of thawing.

B. The indications and dosage for autogeneic plasma components do not differ from those for allogeneic plasma.
PERTINENT LITERATURE

PROCEDURES IN PATIENTS RECEIVING WARFARIN

PROCEDURE-SPECIFIC LITERATURE

MASSIVE TRANSFUSION LITERATURE

