Mycology Proficiency Testing Program
January 2010 Test Event Critique

Wadsworth Center
New York State Department of Health
Dr. Vishnu Chaturvedi, Director

Dr. Ping Ren, Proficiency Testing Program Coordinator

Mycology Laboratory
Wadsworth Center
New York State Department of Health
120 New Scotland Avenue
Albany, NY 12208

Phone: (518) 474-4177
Fax: (518) 486-7971
E-mail: mycologyp@wadsworth.org
CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>3</td>
</tr>
<tr>
<td>PT Schedules</td>
<td>4</td>
</tr>
<tr>
<td>Test Specimens and Grading Policy</td>
<td>5</td>
</tr>
<tr>
<td>Answer Keys and Laboratory Performance Summary</td>
<td>6</td>
</tr>
<tr>
<td>Test Statistics</td>
<td>8</td>
</tr>
<tr>
<td>Mold Descriptions</td>
<td>9</td>
</tr>
<tr>
<td>M-1 Cladosporium sp.</td>
<td></td>
</tr>
<tr>
<td>M-2 Aspergillus niger</td>
<td></td>
</tr>
<tr>
<td>M-3 Penicillium sp.</td>
<td></td>
</tr>
<tr>
<td>M-4 Microsporum gypseum</td>
<td></td>
</tr>
<tr>
<td>M-5 Rhizopus sp.</td>
<td></td>
</tr>
<tr>
<td>M-Edu. Gliocladium sp.</td>
<td></td>
</tr>
<tr>
<td>Yeast Descriptions</td>
<td>22</td>
</tr>
<tr>
<td>Y-1 Candida guillermondii</td>
<td></td>
</tr>
<tr>
<td>Y-2 Cryptococcus neoformans</td>
<td></td>
</tr>
<tr>
<td>Y-3 Hansenula anomala</td>
<td></td>
</tr>
<tr>
<td>Y-4 Prototheca wickerhamii</td>
<td></td>
</tr>
<tr>
<td>Y-5 Candida glabrata</td>
<td></td>
</tr>
<tr>
<td>Antifungal Susceptibility Testing for Yeasts</td>
<td>37</td>
</tr>
<tr>
<td>Antifungal Susceptibility Testing for Molds (Educational)</td>
<td>40</td>
</tr>
<tr>
<td>Direct Detection - Cryptococcus neoformans Antigen Test</td>
<td>44</td>
</tr>
<tr>
<td>Bibliography</td>
<td>47</td>
</tr>
</tbody>
</table>
Schedule of 2010 Mycology PT Mailouts*‡

<table>
<thead>
<tr>
<th>GENERAL</th>
<th>GENERAL POSTMARK DEADLINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 27, 2010</td>
<td>March 12, 2010</td>
</tr>
<tr>
<td>May 26, 2010</td>
<td>June 18, 2010</td>
</tr>
<tr>
<td>September 29, 2010</td>
<td>November 12, 2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEASTS ONLY</th>
<th>YEASTS ONLY POSTMARK DEADLINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 27, 2010</td>
<td>February 19, 2010</td>
</tr>
<tr>
<td>May 26, 2010</td>
<td>June 18, 2010</td>
</tr>
<tr>
<td>September 29, 2010</td>
<td>October 22, 2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIRECT DETECTION TESTING</th>
<th>DIRECT DETECTION TESTING POSTMARK DEADLINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 27, 2010</td>
<td>February 12, 2010</td>
</tr>
<tr>
<td>September 29, 2010</td>
<td>October 15, 2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANTIFUNGAL SUSCEPTIBILITY FOR YEASTS</th>
<th>ANTIFUNGAL SUSCEPTIBILITY FOR YEASTS POSTMARK DEADLINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 27, 2010</td>
<td>February 19, 2010</td>
</tr>
<tr>
<td>May 26, 2010</td>
<td>June 18, 2010</td>
</tr>
<tr>
<td>September 29, 2010</td>
<td>October 22, 2010</td>
</tr>
</tbody>
</table>

*Please provide us with your email information so we could inform you when a new critique is posted online.

‡Mycology PT Program has a set of standard test strains, which typically represent characteristic features of the respective species. These strains will be made available to the participating laboratories for educational purposes. For practical reasons, no more than two strains will be shipped at any given time subject to a maximum of five strains per year. Preference will be given to laboratories that request test strains for remedial purposes following unsatisfactory performance.
TEST SPECIMENS AND GRADING POLICY

Test Specimens*

At least two strains of each mold specimen were examined for inclusion in the proficiency test event of January 2009. The colony morphology of these strains was studied on Sabouraud dextrose agar. The microscopic morphologic features were examined by potato dextrose agar slide cultures. The physiological characteristics, such as cycloheximide sensitivity and growth at higher temperatures, were investigated with appropriate test media. The single strain that best demonstrated the morphologic and physiologic characteristics typical of the species was used as a test analyte. Similarly, two or more strains of yeast species were examined for inclusion in the proficiency test. The colony morphology of all yeast strains was studied on corn meal agar with Tween 80 plates inoculated by Dalmau or streak-cut method. Carbohydrate assimilation was studied with the API 20C AUX identification kit. The fermentations of carbohydrates, i.e., glucose, maltose, sucrose, lactose, trehalose, and cellobiose, were also investigated using classical approaches. Additional physiologic characteristics such as nitrate assimilation, urease activity, and cycloheximide sensitivity were investigated with the appropriate test media. The single strain that best demonstrated the morphologic and physiologic characteristics of the proposed test analyte was selected.

Grading Policy

A laboratory’s response for each sample is compared with the response that reflects 80 percent agreement of 10 referee laboratories and/or 80 percent of all participating laboratories. The referee laboratories are selected at random from among hospital laboratories participating in the program. They represent all geographical areas of New York State and must have a record of excellent performance during the preceding three years. The maximum score for each specimen is 20 based on the formula:

\[
\frac{\text{# of correct responses} \times 100}{\text{# of fungi present} + \text{# incorrect responses}}
\]

Acceptable results for antifungal susceptibility testing are based on consensus MIC values +/- 2 dilutions or interpretation per CLSI (NCCLS) guidelines or other publications. One yeast is to be tested against following drugs: amphotericin B, anidulafungin, caspofungin, flucytosine (5-FC), fluconazole, itraconazole, ketoconazole, micafungin, posaconazole, and voriconazole. The participating laboratories are allowed to select any number of antifungal drugs from the test panel based upon testing practices in their facilities. A maximum score of 100 will be equally divided among the drugs selected by the individual laboratory. If a result is incorrect, then laboratory gets a score of zero for that particular test component or set.

For Cryptococcus neoformans antigen test, laboratories are evaluated on the basis of their responses and on overall performance for all the analytes tested in the Direct Detection category. Appropriate responses are determined by 80% agreement in participant responses. Target values and acceptable ranges are mean value +/- 2 dilutions; positive or negative answers will be acceptable from laboratories that do not report titers. When both qualitative and quantitative results are reported, ten points will be deducted for each incorrect result. When only qualitative OR quantitative results are reported, twenty points will be deducted from each incorrect result.

A failure to attain an overall score of 80% is considered unsatisfactory performance. Laboratories receiving unsatisfactory scores in two out of three consecutive proficiency test events may be subject to ‘cease testing’ of clinical specimens.

*The use of brand and/or trade names in this report does not constitute an endorsement of the products on the part of the Wadsworth Center or the New York State Department of Health.
ANSWER KEY AND LABORATORY PERFORMANCE

Mycology – General

<table>
<thead>
<tr>
<th>Specimen Key</th>
<th>Validated Specimen</th>
<th>Other Acceptable Answers</th>
<th>Correct Responses / Total # Laboratories (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-1</td>
<td>Cladosporium sp.</td>
<td>Cladosporium sp.</td>
<td>71/73 (97)</td>
</tr>
<tr>
<td>M-2</td>
<td>Aspergillus niger</td>
<td>Aspergillus niger species complex</td>
<td>70/73 (96)</td>
</tr>
<tr>
<td>M-3</td>
<td>Penicillium sp.</td>
<td>Penicillium sp.</td>
<td>69/71 (97)</td>
</tr>
<tr>
<td>M-4</td>
<td>Microsporum gypseum</td>
<td>Not validated</td>
<td>19/73 (26)</td>
</tr>
<tr>
<td>M-5</td>
<td>Rhizopus sp.</td>
<td>Rhizopus sp.</td>
<td>71/73 (97)</td>
</tr>
<tr>
<td>M-Edu.</td>
<td>Gliocladium sp.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mycology – Yeast Only

<table>
<thead>
<tr>
<th>Specimen Key</th>
<th>Validated Specimen</th>
<th>Other Acceptable Answers</th>
<th>Correct Responses / Total # Laboratories (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-1</td>
<td>Candida guilliermondii</td>
<td>Candida guilliermondii</td>
<td>52/53 (98)</td>
</tr>
<tr>
<td>Y-2</td>
<td>Cryptococcus neoformans</td>
<td>Cryptococcus neoformans</td>
<td>49/53 (92)</td>
</tr>
<tr>
<td>Y-3</td>
<td>Hansenula anomalaka</td>
<td>Hansenula anomalaka</td>
<td>51/53 (96)</td>
</tr>
<tr>
<td>Y-4</td>
<td>Prototheca wickerhamii</td>
<td>Prototheca wickerhamii</td>
<td>52/53 (98)</td>
</tr>
<tr>
<td>Y-5</td>
<td>Candida glabrata</td>
<td>Candida glabrata</td>
<td>52/53 (98)</td>
</tr>
</tbody>
</table>
Mycology – Antifungal Susceptibility Testing for Yeasts (S-1: *Candida albicans M955*)

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Acceptable MIC (μg/ml) Range</th>
<th>Acceptable Interpretation</th>
<th>Acceptable Responses/Total # Laboratories (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B</td>
<td>0.25 – 1.0</td>
<td>Susceptible / No interpretation</td>
<td>26/26 (100)</td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>0.125 – 0.5</td>
<td>Susceptible</td>
<td>17/17 (100)</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>1.0 – 4.0</td>
<td>Susceptible</td>
<td>22/22 (100)</td>
</tr>
<tr>
<td>Flucytosine (5-FC)</td>
<td>0.06 – 1.0</td>
<td>Susceptible</td>
<td>25/25 (100)</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>≥ 64</td>
<td>Resistant</td>
<td>32/32 (100)</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>Not validated</td>
<td>Not validated</td>
<td>22/29 (76%)</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>0.5 – 4.0</td>
<td>No interpretation</td>
<td>7/7 (100)</td>
</tr>
<tr>
<td>Micafungin</td>
<td>0.06 – 0.25</td>
<td>Susceptible</td>
<td>17/17 (100)</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>0.06 – 0.25</td>
<td>Susceptible</td>
<td>17/17 (100)</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>1.0 – 4.0</td>
<td>Susceptible / Susceptible-dose dependent</td>
<td>25/25 (100)</td>
</tr>
</tbody>
</table>

Mycology – Direct detection (*Cryptococcus Antigen Test*)

<table>
<thead>
<tr>
<th>Specimen Key</th>
<th>Validated Specimen</th>
<th>Correct Responses / Total # Laboratories (%)</th>
<th>Acceptable Titer Range</th>
<th>Correct Responses / Total # Laboratories (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cn-Ag-1</td>
<td>Positive (1:64)</td>
<td>70/70 (100)</td>
<td>1:16 – 1:256</td>
<td>59/64 (92)</td>
</tr>
<tr>
<td>Cn-Ag-2</td>
<td>Positive (1:32)</td>
<td>70/70 (100)</td>
<td>1:8 – 1:128</td>
<td>61/64 (95)</td>
</tr>
<tr>
<td>Cn-Ag-3</td>
<td>Negative (1:32)</td>
<td>70/70 (100)</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Cn-Ag-4</td>
<td>Negative (1:32)</td>
<td>70/70 (100)</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Cn-Ag-5</td>
<td>Negative (1:32)</td>
<td>70/70 (100)</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Cn-Ag-Edu</td>
<td>Positive (1:64)</td>
<td></td>
<td></td>
<td>1:16 – 1:512</td>
</tr>
</tbody>
</table>
TEST STATISTICS

<table>
<thead>
<tr>
<th></th>
<th>General Yeast Only</th>
<th>Antifungal Susceptibility Testing for Yeasts</th>
<th>Direct Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participating laboratories</td>
<td>73</td>
<td>53</td>
<td>33</td>
</tr>
<tr>
<td>Number of referee laboratories</td>
<td>10</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>Number of laboratories responding by deadline</td>
<td>73</td>
<td>53</td>
<td>32</td>
</tr>
<tr>
<td>Number of laboratories responding after deadline</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Number of laboratories not responding</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Number of laboratories successfully completing this test</td>
<td>72</td>
<td>52</td>
<td>32</td>
</tr>
<tr>
<td>Number of laboratories unsuccessfully completing this test</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Number of Laboratories Using Commercial Yeast Identification System*

- API 20C AUX 32
- AMS Vitek 7
- Vitek2 system 23
- Remel Uni-Yeast-Tek 1
- IDS Rapid System 0
- Microscan 2

Number of Laboratories Using Commercial Antifungal Susceptibility Testing System/Method*

- YeastOne Colorimetric microdilution method 25
- Etest 4
- Disk diffusion method 0
- Others† 5

Number of Laboratories Using Commercial Cryptococcus neoformans Antigen Detection System

- EIA method 2
 - Meridien Diagnostic 2
- Latex Agglutination method 68
 - Immuno-Mycologics 5
 - Meridien Diagnostic 41
 - Remel 5
 - Wampole 17

(*Include multiple systems used by some laboratories)

(†Include laboratories using CLSI Microbroth dilution method)
M-1 *Cladosporium* sp.

Source: Sputum

Laboratory Performance: No. Laboratories

Referee Laboratories with correct ID: 10

Laboratories with correct ID: 71

Laboratories with incorrect ID: 2

Phaeoannelomyces werneckii (2)

Outcome: Validated

Clinical Significance: *Cladosporium* sp. is a common airborne mold, but rarely causes human disease such as allergic fungal sinusitis. The fungus has also been implicated in cutaneous infection.

Ecology: *Cladosporium* sp. is often isolated from soil and plant litter. It is most frequently found in outdoor air in temperate climates.

Laboratory Diagnosis:

1. **Culture** – *Cladosporium* sp. grew rapidly on Sabouraud’s dextrose agar; after 5 days at 25°C, *Cladosporium* sp. colony was grayish green, powdery or velvety on its surface. (Figure 1A). The reverse was greenish-black to brownish-black (Figure 1B).

2. **Microscopic morphology** – Lactophenol cotton blue mount showed conidia often in long, branched chains with variable size. Conidia were unicellular and ellipsoidal to round at the tip. Prominent scars were visible at the points of attachment (Figure 2).

3. **Differentiation from other molds** – Generally, *Cladosporium* spp. have longer chains of conidia than *Fonsecaea* spp. and have small dark scars of attachment. On the country, the distal end of the conidiophore of *Fonsecaea* develops swollen denticles that bore primary single-celled ovoid conidia. *Xylohypha bantiana* is differentiated from *Cladosporium* by its lack of disjuncture scars on conidia.

4. **In vitro susceptibility testing** – *Cladosporium* species are generally susceptible to fluconazole.

5. **Molecular tests** – Restriction fragment length polymorphisms (RFLP) of the ribosomal small subunit gene and internal transcribed spacer (ITS) regions were used to distinguish *Cladosporium* species from other closely related molds such as *Fonsecaea, Phialophora,* and *Rhinocladiella* spp.

Comments: Two laboratories reported this specimen as *Phaeoannelomyces werneckii*, which is yeast-like moist slow growing mold.

Further Reading:

Figure 1. (A) Five-day-old, grayish green colony of Cladosporium sp. on Sabouraud’s dextrose agar. (B) The reverse of five-day-old colony of Cladosporium sp. on Sabouraud’s dextrose agar.

Figure 2. Microscopic morphology of Cladosporium sp. conidia occur in long, branched chains with variable size. The scars at the points of attachment of conidia are evident (A, 400× magnification; B, line drawing not to scale).
M-2 *Aspergillus niger*

Source: Bronchial wash
Laboratory Performance: No. Laboratories
Referee Laboratories with correct ID: 10
Laboratories with correct ID: 70
Laboratories with incorrect ID: 3

- (*Aspergillus flavus*) (1)
- (*Aspergillus glaucus*) (1)
- (*Aspergillus nidulans*) (1)

Outcome: Validated

Clinical Significance: *Aspergillus niger* commonly causes ear infections. It is also implicated in allergic aspergillosis, pulmonary aspergilloma and rarely in primary cutaneous disease.

Ecology: *A. niger* is cosmopolitan in soil and on plants.

Laboratory Diagnosis:

1. **Culture** – *A. niger* was a fast grower on Sabouraud’s dextrose agar; after 5 days at 25°C, the initial growth was white, becoming black later on giving “salt and pepper appearance” (Figure 3A) and reverse turning pale yellow (Figure 3B). Good growth was seen at 37°C.

2. **Microscopic morphology** – Lactophenol cotton blue mount showed septate hyphae with smooth-walled, simple conidiophores measuring up to 1 mm in length. Conidiophores end in vesicle, which was globose and entirely covered (radiating) with two series of sterigmata (biseriate). Conidia produced from these sterigmata were brown to black, round, rough walled, and in chains measuring 4 – 5 μm in diameter (Figure 4).

3. **Differentiation from other molds** – *A. niger* is easily differentiated from other *Aspergillus* species by its rapid growth, black colonies, biseriate, radiating heads with black, round, rough conidia.

4. **In vitro susceptibility testing** – Most clinical isolates are susceptible to amphotericin B and variably susceptible to itraconazole and resistant to fluconazole. Posaconazole, ravuconazole, and voriconazole exhibit promising activity against *A. niger*. *A. niger* is also susceptible to caspofungin.

5. **Molecular tests** – PCR method has been described to differentiate various species in the *A. niger* aggregate.

Comments: Few laboratories misidentified this specimen as other *Aspergillus* species.

Further Reading:

Figure 3. (A) Five-day-old, black colony of *Aspergillus niger* on Sabouraud’s dextrose agar. The colony shows typical “salt and pepper appearance”, which results from darkly pigmented conidia borne in large numbers on conidiophores. (B) The reverse of five-day-old colony of *Aspergillus niger*.

Figure 4. Microscopic morphology of *Aspergillus niger* showing globose vesicle with biseriate, radiating head; conidia are dark, round, and rough (A, 400× magnification; B, line drawing not to scale).
M-3 Penicillium sp.

Source: Hand

Laboratory Performance: No. Laboratories
- Referee Laboratories with correct ID: 10
- Laboratories with correct ID: 69
- Laboratories with incorrect ID: 2
 - *(Aspergillus versicolor)*
 - *(Trichophyton mentagrophytes)*

Outcome: Validated

Clinical Significance: *Penicillium* spp. other than *Penicillium marneffei* are commonly considered as laboratory contaminants. *Penicillium* spp. have been isolated from patients with keratitis, endophthalmitis, otomycosis, necrotizing esophagitis, pneumonia, endocarditis, peritonitis, and urinary tract infections. Some species are known to produce mycotoxins, which are nephrotoxic and carcinogenic.

Ecology: *Penicillium* spp. are widespread and are found in soil, decaying vegetables and fruits, and the air.

Laboratory Diagnosis:
1. **Culture** – *Penicillium* sp. grew rapidly, velvety to powdery in texture. The colony was initially white and then becoming blue green, gray green, olive gray over time (Figure 5A). The reverse was pale to yellowish (Figure 5B).
2. **Microscopic morphology** – Lactophenol cotton blue or Calcofluor mounts showed septate hyaline hyphae, simple or branched conidiophores, and characteristic metulae, phialides. Metulae were secondary branches that form on conidiophores. The brush-like clusters of phialides, referred to as "penicilli". The unicellular conidia were round, and formed in chains at the tips of the phialides (Figure 6).
3. **Differentiation from other mold** – *Penicillium* sp. can be differentiated from *Paecilomyces* by flask-shaped phialides and globose to subglobose conidia; from *Gliocladium* by chains of conidia; and from *Scopulariopsis* by phialides.
4. **In vitro susceptibility testing** – In general, *Penicillium* sp. is susceptible to amphotericin B, ketoconazole, itraconazole, and voriconazole.
5. **Molecular tests** – Internal transcribed spacer (ITS) regions can be used for *Penicillium* species identification.

Comments: This specimen is *Penicillium brevicompactum*, which was supplied by a vendor. *P. brevicompactum* is a ubiquitous fungal species that contaminates diverse substrates and commodities and produces an array of metabolites toxic to human and animals. Somehow this isolate could not grow at 30°C. Room temperature was suggested for growth. One laboratory reported this specimen as *Aspergillus versicolor*, which has reduced vesicles, could be confused with *Penicillium* sp., but regular sized vesicle conidial head should be able to be observed to distinguish it from *Penicillium* sp.

Further Reading:

Figure 5. (A) Seven-day-old, white edge, blue green, to olive green colony of *Penicillium* sp. on Sabouraud’s dextrose agar. (B) The reverse of seven-day-old *Penicillium* sp. colony.

Figure 6. Microscopic morphology of *Penicillium* sp. showing broom-shaped phialides and round conidia (200× magnification).
M-4 *Microsporum gypseum*

Source: Toenail

Laboratory Performance:

- Referee Laboratories with correct ID: 2
- Laboratories with correct ID: 19
- Laboratories with incorrect ID: 54
 - *Microsporum canis* (20)
 - *Trichophyton mentagrophytes* (11)
 - *Trichophyton rubrum* (8)
 - *Microsporum persicolor* (7)
 - *Trichophyton tonsurans* (5)
 - *Chrysosporium* sp. (1)
 - *Penicillium* sp. (1)
 - *Trichophyton* sp. (1)

Outcome: Non-validated

Clinical Significance: *Microsporum gypseum* is a well-known dermatophyte, which commonly infects hair and skin.

Ecology: *M. gypseum* is a geophilic dermatophyte and also isolated from fur of rodents.

Laboratory Diagnosis:

1. **Culture** – *M. gypseum* grew relatively rapidly. On Sabouraud’s dextrose agar, after 5 days at 25°C, the texture of the colony was powdery to granular and the color was beige to cinnamon brown (Figure 7A). The reverse was yellow to brownish red (Figure 7B).

2. **Microscopic morphology** – Lactophenol cotton blue mount showed septate hyphae, macroconidia and microconidia. Macroconidia were abundant, fusiform and symmetrical in shape with rounded ends. The walls of macroconidia were thin and rough and they contain 3-6 cells. Microconidia were moderately numerous in number, club-shaped and located along the hyphae. (Figure 8).

3. **Differentiation from other dermatophyte** – *Microsporum* differs from *Trichophyton* and *Epidermophyton* by its spindle-shaped macroconidia with echinulate to rough walls.

4. **In vitro susceptibility testing** – Limited information is available. It was reported that *M. gypseum* was susceptible to terbinafine and itraconazole.

5. **Molecular tests** – PCR and PCR-restriction fragment length polymorphism (RFLP) methods targeting the DNA topoisomerase II genes was reported for identification of dermatophytes.

Comments: This specimen was invalidated for current PT event. Majority of laboratories did not observe the characteristic of macroconidia from this lyophilized specimen.

Further Reading:

Figure 7. (A) Five-day old, powdery to granular, beige to cinnamon brown colony of *Microsporum gypseum* on Sabouraud’s dextrose agar. (B) The reverse of the five-day-old colony of *M. gypseum*.

Figure 8. Microscopic morphology of *Microsporum gypseum* showing 3-6 celled macroconidia with thin and rough wall and club-shaped microconidia (200× magnification).
M-5 Rhizopus sp.

Source: Chest
Laboratory Performance: No. Laboratories
Referee Laboratories with correct ID: 10
Laboratories with correct ID: 71
Laboratories with incorrect ID: 2

(Mucor sp.)

Outcome: Validated

Clinical Significance: *Rhizopus* sp. is the most common agent of zygomycosis. The predisposing factors are diabetic ketoacidosis, malnutrition, burns, and immunocompromising conditions such as hematologic malignancy, corticosteroid therapy, etc.

Ecology: *Rhizopus* sp. is cosmopolitan in distribution, mainly isolated from soil, decaying vegetables and bread.

Laboratory Diagnosis:

1. **Culture** – At 25°C, colonies on Sabouraud’s dextrose agar, were wooly in texture, grayish brown, growing very rapidly, filling the culture plate in 24 – 48 h (Figure 9).
2. **Microscopic morphology** – Lactophenol cotton blue showed broad, aseptate hyphae, either single or tufts of brown sporangiophores (conidiophores) arising from hyphae (stolons) opposite well-developed rhizoids (root like structures). Sporangiophores had terminal sporangia with a round columella (vesicle, enlarged at the apex), containing round to oval sporangiospores or sexual spores (Figure 10).
3. **Differentiation from other zygomycetes** – *Rhizopus* species is distinguished from other members by the presence of well-developed rhizoids situated opposite sporangiophores. Sporangiophores are often unbranched and in tufts unlike in *Mucor, Rhizomucor, Absidia* (Table 1).
4. **In vitro susceptibility testing** – Most clinical isolates are susceptible to amphotericin B, itraconazole, and posaconazole, but resistant to voriconazole.
5. **Molecular tests** – PCR assay for the rapid and accurate identification of the agents of zygomycosis has been reported by Voigt et al.

Comments: This isolate is *Rhizopus stolonifer*. All the laboratories except two reported correct identification. Two laboratories reported it as *Mucor* sp., possibly because characteristic rhizoids were not observed.

Further reading:

Table 1. Scheme for differentiation of various genera of zygomycetes pathogenic for humans and animals

<table>
<thead>
<tr>
<th>Genus</th>
<th>Rhizoids</th>
<th>Conidiophores</th>
<th>Sporangia</th>
<th>Columella</th>
<th>Apophysis</th>
<th>Conidia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absidia</td>
<td>Present</td>
<td>Branched</td>
<td>Pyriform</td>
<td>Hemispherical</td>
<td>Present</td>
<td>Globose, smooth</td>
</tr>
<tr>
<td>Mucor</td>
<td>Absent</td>
<td>Branched – single or Multiple</td>
<td>Globose</td>
<td>Various forms – globose, elongated</td>
<td>Absent</td>
<td>Globose - cylindrical</td>
</tr>
<tr>
<td>Rhizopus</td>
<td>Present</td>
<td>Single or group</td>
<td>Globose, gray – brown</td>
<td>Sub-globose</td>
<td>Present, but inconspicuous</td>
<td>Angular, striated</td>
</tr>
<tr>
<td>Rhizomucor</td>
<td>Present</td>
<td>Sympodial</td>
<td>Globose, gray</td>
<td>Sub-globose, brown</td>
<td>Absent</td>
<td>Sub-globose, small</td>
</tr>
</tbody>
</table>
Figure 9. (A) Three-day-old grayish brown colony of *Rhizopus* sp. on Sabouraud’s dextrose. (B) The reverse of three-day-old colony of *Rhizopus* sp.

Figure 10. Microscopic morphology of *Rhizopus* sp. showing broad, aseptate hyphae, sporangiophores arising opposite rhizoids, sporangia with round columella, and oval sporangiospores (A, 100X magnification; B, line drawing not to drawn to scale).
M-Edu. *Gliocladium* sp.

Source: Skin

Laboratory Performance: No. Laboratories
Referee Laboratories with correct ID: 10
Laboratories with correct ID: 72
Laboratories with incorrect ID: 1

(Paecilomyces sp.) (1)

Clinical Significance: *Gliocladium* sp. is considered a common laboratory contaminant as there are no reported clinical cases.

Ecology: *Gliocladium* species have a worldwide distribution and they are commonly isolated from a wide range of plant debris and soil.

Laboratory Diagnosis:
1. **Culture** – *Gliocladium* sp. was a rapid growing mold. At 25°C, initial growth was white, becoming olive green in the center, fluffy; reverse was pale yellow (Figure 11).
2. **Microscopic morphology** – Lactophenol cotton blue mount showed hyaline, septate hyphae with *Penicillium*-like branched conidiophores. Conidia clumped together to form large balls, which were adjacent to phialides (Figure 12).
3. **Differentiation from other molds** – The microscopic morphology of *Gliocladium* species resembles that of *Penicillium* spp. However, the conidia of *Gliocladium* are not formed in chain like *Penicillium* spp.
4. **In vitro susceptibility testing** – No information available
5. **Molecular tests** – No information available

Comments: All the laboratories except one correctly identified this specimen.

Further reading:
Figure 11. (A) Five-day-old, olive green colony of *Gliocladium* sp. on Sabouraud’s dextrose agar. (B) The reverse of five-day-old *Gliocladium* sp. colony.

Figure 12. Microscopic morphology of *Gliocladium* species with septate hyaline hyphae, brush like clusters of phialides and conidia clump together to form balls (400X magnification).
YEAST DESCRIPTIONS

Y-1 Candida guilliermondii

Source: Blood / Nail / Urine
Laboratory Performance: No. Laboratories
Referee Laboratories with correct ID: 10
Laboratories with correct ID: 52
Laboratories with incorrect ID: 1 (Candida famata)
Outcome: Validated

Clinical Significance: Candida guilliermondii is a frequent causal agent of nosocomial fungemia in immunosuppressed patient. It is also infrequent casual agent of urinary tract infections, brain abscess, and ocular infections.

Ecology: C. guilliermondii is widely distributed in nature (routinely isolated from insects, soil, plants, atmosphere, seawater, the exudates of various trees, and processed foods) and is a common constituent of the normal human microflora.

Laboratory Diagnosis:
1. Culture – On Sabouraud’s dextrose agar after 7 days at 25°C, colony was flat, smooth, cream-yellow (Figure 13).
2. Microscopic morphology – On corn meal agar with Tween 80, few short pseudohyphae with clusters of blastoconidia were seen (Figure 14).
3. Differentiation from other yeasts – C. guilliermondii is the anamorph (asexual form) of Pichia guilliermondii/Kodamaea ohmeri. It ferments glucose, sucrose, and trehalose, grows at 37°C, and on media containing cycloheximide. It does not form pink pigment thereby differentiating it from Rhodotorula species. It does not produce true hyphae, which differentiates it from Candida ciferrii and Trichosporon beigelii. Unlike Candida lusitaniae, it is unable to grow at 45°C.
4. In vitro susceptibility testing – Most clinical isolates are susceptible to amphotericin B, 5-flucytosine, and azoles such as fluconazole, ketocoanzole, itraconazole and caspofungin. A few isolates are reported to have high MIC to azoles.
5. Molecular tests – Primers for large ribosomal subunit DNA sequences were used in PCR to differentiate C. guilliermondii from C. famata/Debaryomyces hansenii complex. Isolates of C. guilliermondii were identified using PCR to amplify ribosomal DNA, followed by restriction digestion of the PCR product.

Comments: One participating laboratory reported this isolate as C. famata, probably because in the API 20C AUX yeast identification system, C. guilliermondii and C. famata are assigned the same biocode. Supplementary test based upon melibiose assimilation is recommended for further differentiation of C. guilliermondii and C. famata. C. guilliermondii assimilates melezitose and raffinose frequently (90%), while C. famata assimilates the two carbohydrates infrequently (60%).

Further Reading:

Sequences alignment:

The identity of the test isolate was confirmed in the Mycology PTP program by sequencing of its ITS1 region of rDNA.

Query	1	CGTAGGTGAACCTCGGAAGGATCATTACAGTTTCTTTTGCCAGCGCTTAACTCGCGGG	60
Sbjct	2	CGTAGGTGAACCTCGGAAGGATCATTACAGTTTCTTTTGCCAGCGCTTAACTCGCGGG	61
Query	61	CGAAAAACCTTACACACAGTGTCTTTTTGATACAGAACTCTTGCTTTGGTTTGGCCTAGA	120
Sbjct	62	CGAAAAACCTTACACACAGTGTCTTTTTGATACAGAACTCTTGCTTTGGTTTGGCCTAGA	121
Query	121	GATAGGGTTGCGCAGCTTAACAAACACAAATTTATATTTTACAGTTTACAAAAT	180
Sbjct	122	GATAGGGTTGCGCAGCTTAACAAACACAAATTTATATTTTACAGTTTACAAAAT	181
Query	181	TTTGAACTTAACTCTCACAACAAACTTTCAACAGAATCTTCTTCGATTCAAGAA	240
Sbjct	182	TTTGAACTTAACTCTCACAACAAACTTTCAACAGAATCTTCTTCGATTCAAGAA	241
Query	241	CGCAG	245
Sbjct	242	CGCAG	246

Alignment of primary sequences of the ITS1 regions of *C. guilliermondii* strain SMB (Sbjct) and PT specimen *C. guilliermondii* M2167 (Query).
Figure 13. Seven-day-old, flat, smooth, cream-yellow colony of *Candida guilliermondii* on Sabouraud’s dextrose agar.

Figure 14. Microscopic morphology of *Candida guilliermondii*. On corn meal agar with Tween 80 culture, short pseudohyphae with clusters of blastoconidia are seen (A, 200× magnification; B, line drawing not to scale).
Y-2 Cryptococcus neoformans

Source: CSF / Sputum / Urine

Laboratory Performance: No. Laboratories
Referee Laboratories with correct ID: 10
Laboratories with correct ID: 49
Laboratories with incorrect ID: 4
 (Cryptococcus laurentii) (2)
 (Cryptococcus terreus) (1)
 (Pichia ohmeri) (1)

Outcome: Validated

Clinical Significance: The incidence of cryptococcosis due to *Cryptococcus neoformans* infection increased with the spread of AIDS and other immunosuppressive conditions. *Cr. neoformans* var. *grubii* and var. *neoformans* mainly cause meningoencephalitis in patients with AIDS or other underlying immune dysfunctions. *Cr. neoformans* var. *neoformans* infections are more likely to have cutaneous involvement, and to infect older patients, than are infections caused by *Cr. grubii*. *Cr. gattii* causes pulmonary cryptococcosis and systemic cryptococcosis in normal and immunocompromised hosts.

Ecology: *Cryptococcus neoformans* var. *neoformans* and var. *grubii* are commonly found in avian (pigeon) droppings. Both varieties have world-wide distributions. *Cr. gattii* is commonly found on *Eucalyptus* and other trees and mainly distributed in Australia, Southeast Asia, Southern California, Pacific Northwest, Vancouver Island, British Columbia, Canada, and South America.

Laboratory Diagnosis:

1. **Culture** – On Sabouraud’s dextrose agar after 7 days at 25°C, colony was cream to tan in color, smooth, moist, and soft (Figure 15).
2. **Microscopic morphology** – On corn meal agar with Tween 80, *Cr. neoformans* cells were large and round, with no pseudohyphae or true hyphae. In India-ink preparation, encapsulated yeasts were seen (Figure 16).

3. **Differentiation from other yeasts** – *Cr. neoformans* does not ferment any carbohydrates and does not grow on media containing cycloheximide, but it grows at 37°C. *Cr. neoformans* produces dark brown colonies on niger seed agar. It produces urease enzyme and it is negative on nitrate reaction. *Cr. neoformans* and *Cr. gattii* are differentiated by 1) growth and color change: *Cr. gattii* on canavanine-glycine-bromthymol blue (CGB) medium becomes blue-green after 2 – 5 days at 25°C; 2) PCR technique: *Cr. gattii* can be differentiated from the other two varieties using a number of primers; 3) serotyping: *Cr. neoformans* var. *grubii* is serotype A, *Cr. neoformans* var. *neoformans* is serotype D, *Cr. gattii* is serotype B and C.

4. **In vitro susceptibility testing** – Most isolates are susceptible to amphotericin B, 5-flucytocine, and to azoles like fluconazole, itraconazole, and posaconazole. A few isolates with high MIC to fluconazole have been isolated from AIDS patients.

5. **Molecular tests** – *Cr. neoformans* is one of the most intensely studied pathogenic fungi. The molecular biology of this organism has revealed various virulence factors and unique genotypes among clinical strains.

Comments: Originally, *Cryptococcus neoformans* was described as comprising of two varieties: *Cr. neoformans* var. *neoformans* (serotypes A & D) and *Cr. neoformans* var. *gattii* (serotype B & C). Recently, *Cr. neoformans* was further subdivided into two varieties: *Cr.*
neoformans var. *grubii* (serotype A) and *Cr. neoformans* var. *neoformans* (serotype D). *Cr. neoformans* var. *gattii* was re-named as *Cr. gattii*.

Further Reading:

Sequence alignment
The identity of the test isolate was confirmed in the Mycology PTP program by sequencing of its ITS2 region of rDNA.

<table>
<thead>
<tr>
<th>Query</th>
<th>Sbjct</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCATCGATTTG-AGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGA</td>
<td>GCATCGA--TGAGAAGGCGAGGAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGA</td>
</tr>
<tr>
<td>ATCATCGAGTCTTTTAAGCGCGACCGACCTGGGTTTTATTACCTGTTGGACTTGGATTTGGGTGT</td>
<td>ATCATCGAGTCTTTTAAGCGCGACCGACCTGGGTTTTATTACCTGTTGGACTTGGATTTGGGTGT</td>
</tr>
<tr>
<td>TTGCCGCCGACCTGCAAAGGACGTCGGTCTCCCGCTTTAAATGTGTTAGTGGAAGGATATTAC</td>
<td>TTGCCGCCGACCTGCAAAGGACGTCGGTCTCCCGCTTTAAATGTGTTAGTGGAAGGATATTAC</td>
</tr>
<tr>
<td>CTGTCAGCCCGGCTTAAATGGGTCGTGCTGGACTTGGATTTGGGTGT</td>
<td>CTGTCAGCCCGGCTTAAATGGGTCGTGCTGGACTTGGATTTGGGTGT</td>
</tr>
<tr>
<td>ACAACCATCTCTTTTTGTTGGACCTCAAATCAGGGCTGCCTGAACTTAAGCAT</td>
<td>ACAACCATCTCTTTTTGTTGGACCTCAAATCAGGGCTGCCTGAACTTAAGCAT</td>
</tr>
<tr>
<td>ATCAATAA</td>
<td>ATCAATAA</td>
</tr>
</tbody>
</table>

Alignment of primary sequences of the ITS2 region of *Cr. neoformans var neoformans* JEC21 (Sbjct) and PT specimen *Cr. neoformans* M2168 (Query).
Figure 15. Seven-day-old, cream to tan colored, smooth, moist, and soft colony of *Cryptococcus neoformans* on Sabouraud’s dextrose agar.

Figure 16. Microscopic morphology of *Cryptococcus neoformans* on corn meal agar with Tween 80. (Upper panel) Round, large blastoconidia. (Right, 400× magnification; Left, line drawing not to scale) (Lower panel) India-ink preparation revealing capsules (right, 1000× magnification; Left, line drawing not to scale).
Y-3 Hansenula anomala

Source: Chest / Urine
Laboratory Performance:
Referee Laboratories with correct ID: 10
Laboratories with correct ID: 51
Laboratories with incorrect ID: 2
(Candida parapsilosis) (1)
(Saccharomyces cerevisiae) (1)
Outcome: Validated

Clinical Significance: Hansenula anomala is an infrequently encountered agent causing nosocomial infections. Several cases of fungemia in neonates, and endocarditis in immunosuppressed patients, are reported in the literature.

Ecology: H. anomala is found in soil and on various fruits and vegetables. It is also found on skin of humans and lower animals.

Laboratory Diagnosis:
1. **Culture** – On Sabouraud’s dextrose agar after 7 days at 25°C, colonies appeared smooth, creamy, and soft (Figure 17).
2. **Microscopic morphology** – On corn meal agar with Tween 80, H. anomala showed blastoconidia with ascospores, but no pseudohyphae (Figure 18).
3. **Differentiation from other yeasts** – Hansenula anomala is one of the synonyms of Pichia anomala. Candida pelliculosa is the anamorph (asexual form) of Pichia anomala. H. anomala does not grow on media containing cycloheximide, or at 42°C. It assimilates nitrate but is urease-negative.
4. **In vitro susceptibility testing** – H. anomala is susceptible to amphotericin B, 5-flucytosine, and azoles such as fluconazole, clotrimazole, and itraconazole.
5. **Molecular tests** – PCR amplification of a specific fragment of 18S rDNA and heteroduplex mobility assays were performed to detect and distinguish H. anomala from other clinically important yeasts. Phylogenetic analysis of domain sequences placed four new species in the H. anomala clade.

Comments: One laboratory each reported this specimen as Candida parapsilosis and Saccharomyces cerevisiae respectively. H. anomala is nitrate positive, which differentiates it from C. parapsilosis and S. cerevisiae.

Further Reading:

Sequences alignment:

The identity of the test isolate was confirmed in the Mycology PTP program by sequencing of its ITS2 region of rDNA.

```
Query  1    GAACGCAGCGAAATGCGATACGTATTGTGAATTGCAGATTTTCGTGAATCATCGAATCTT  60
          ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct  246  GAACGCAGCGAAATGCGATACGTATTGTGAATTGCAGATTTTCGTGAATCATCGAATCTT  305
Query  61   TGAACGCACATTGCACCCTCTCCCTCGTTGAGTGATCTGCTCCTGGAATTTTCTCCTCCTCCT  120
          ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct  306  TGAACGCACATTGCACCCTCTCCCTCGTTGAGTGATCTGCTCCTGGAATTTTCTCCTCCTCCT  365
Query  121  TCTCAAACCTCCGAGGTTTTTGAGTTGATGTAATCTGCTAGGAATTTTCTCCCCCTA  180
          ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct  366  TCTCAAACCTCCGAGGTTTTTGAGTTGATGTAATCTGCTAGGAATTTTCTCCCCCTA  425
Query  181  ACTTAGCAAGAGTGTACTAATAAGCAGTCTTTCTGAAATAATGTATTAGGTTCTTCCAAC  240
          ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct  426  ACTTAGCAAGAGTGTACTAATAAGCAGTCTTTCTGAAATAATGTATTAGGTTCTTCCAAC  485
Query  241  TCGTTATATCAGCTAGGGTGATGATGTAATCTGACTCATTGAACTTAAAGCATATCA  300
          ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct  486  TCGTTATATCAGCTAGGGTGATGATGTAATCTGACTCATTGAACTTAAAGCATATCA  545
Query  301  AAAAGTGGACTCTCAATTCAACCATGATAGGACTTACCCTGCTGAATTTAAGCATATCA  352
          ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct  546  AAAAGTGGACTCTCAATTCAACCATGATAGGACTTACCCTGCTGAATTTAAGCATATCA  597
```

Alignment of primary sequences of the ITS2 regions of *H. anomala* M10 (Sbjct) and PT specimen *H. anomala* M2169 (Query).
Figure 17. Seven-day-old, smooth, creamy, soft colony of *Hansenula anomala* on Sabouraud’s dextrose agar.

Figure 18. Microscopic morphology of *Hansenula anomala*. On corn meal agar with Tween 80 culture, blastoconidia with ascus are seen (A, 400 × magnification; B, line diagram not to scale).
Y-4 *Prototheca wickerhamii*

Source: Lung / Blood / Urine
Laboratory Performance:
Referee Laboratories with correct ID: 10
Laboratories with correct ID: 52
Laboratories with incorrect ID: 1
Malassezia pachydermatis (1)
Outcome: Validated

Clinical Significance: *Prototheca wickerhamii* causes protothecosis in humans. Most commonly, these yeast-like algae cause cutaneous and subcutaneous lesions termed bursitis. Rarely, *P. wickerhamii* causes systemic infections. The infection is acquired through traumatic implantation of algae in subcutaneous tissue.

Ecology: *P. wickerhamii* has been isolated from various environmental sources like sewage, slime, and stream sediment.

Laboratory Diagnosis:
1. **Culture** – On Sabouraud’s dextrose agar after 7 days at 25°C, the colony was moist, cream-colored, yeast-like (Figure 19).
2. **Microscopic morphology** – On corn meal agar with Tween 80, sporangia of various sizes, some filled with sporangiospores (endospores), were seen (Figure 20). There was no budding, no hyphae.
3. **Differentiation from related organism** – *P. wickerhamii* requires thiamine for growth, does not grow on media containing cycloheximide, grows well at 25°C and 37°C. The cells of *P. wickerhamii* are smaller than those of *P. zopfii*. On the API 20C AUX, a specific assimilation biocode differentiates it from other *Prototheca* species. The isolates of *P. zopfii* are resistant to 50-μg clotrimazole disk at 37°C while *P. wickerhamii* isolates produces a zone of inhibition.
4. **In vitro susceptibility testing** – Almost all isolates are susceptible to amphotericin B and voriconazole, but resistant to fluconazole and 5 FC, variably susceptible to itraconazole and ketoconazole.
5. **Molecular tests** – Sequence analysis of the mitochondrial small subunit rRNA from *P. wickerhamii* showed higher homology with mitochondrial sequence from plants.

Comments: All the participating laboratories except one correctly identified this specimen. *P. wickerhamii* is distinguishable from *Malassezia pachydermatis* by no growth on the media containing cycloheximide.

Further Reading:

Figure 19. Seven-day-old, moist, cream-colored colony of Prototheca wickerhamii on Sabouraud’s dextrose agar.

A. B.

Figure 20. Microscopic morphology of Prototheca wickerhamii on corn meal agar showing sporangia of various sizes, some filled with sporangiospores (endospores) (A, 400× magnification; B, line drawing not to scale).
Y-5 Candida glabrata

Source: Tissue / Urine
Laboratory Performance:
Referee Laboratories with correct ID: 10
Laboratories with correct ID: 53
Laboratories with incorrect ID: 0
Outcome: Validated

Clinical Significance: Candida glabrata commonly causes urinary tract infections and vaginitis. Incidence of candidiasis caused by C. glabrata has increased in immunosuppressed patients due to more intensive anticancer chemotherapy, bone marrow, and organ transplantation.

Ecology: Humans, lower mammals, and birds are the carriers of C. glabrata.

Laboratory Diagnosis:
1. Culture – On Sabouraud’s dextrose agar at 25°C for 3 to 5 days, colony was white to cream, smooth and shiny (Figure 21).
2. Microscopic morphology – On cornmeal agar with Tween 80, C. glabrata blastoconidia were tiny, round or elliptical in shape (Figure 22).
3. Differentiation from other yeasts – C. glabrata grows at 42°C but does not grow on media containing cycloheximide. It ferments glucose and trehalose. C. glabrata forms only blastoconidia and no pseudohyphae or true hyphae.
4. In vitro susceptibility testing – C. glabrata is susceptible to amphotericin B, caspofungin, and 5-FC but resistant to azoles like fluconazole and itraconazole.
5. Molecular tests – PCR amplification of a mitochondrial rRNA gene fragment, which is species specific, was developed to identify C. glabrata. Diversity of karyotype by pulse-field gel electrophoresis was used to confirm C. glabrata infection. Comparative sequence analysis of cytochrome oxidase gene has been reported for typing of C. glabrata.

Comments: All participating laboratories correctly identified this specimen.

Further Reading:
Antimicrob Agents Chemother. [Epub ahead of print]

Sequences alignment:
The identity of the test isolate was confirmed in Mycology PTP program by sequencing of its ITS2 region of rDNA.

<table>
<thead>
<tr>
<th>Query</th>
<th>Sbjct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3592</td>
</tr>
<tr>
<td>61</td>
<td>3652</td>
</tr>
<tr>
<td>121</td>
<td>3712</td>
</tr>
<tr>
<td>181</td>
<td>3772</td>
</tr>
<tr>
<td>241</td>
<td>3832</td>
</tr>
<tr>
<td>301</td>
<td>3892</td>
</tr>
<tr>
<td>361</td>
<td>3952</td>
</tr>
</tbody>
</table>

Alignment of primary sequences of the ITS2 region of C. glabrata CBS 138 (Sbjct) and PT specimen C. glabrata M2171 (Query).
Figure 21. Four-day-old, white and shiny colony of *Candida glabrata* on Sabouraud’s dextrose agar.

![Figure 21](image)

A. B.

Figure 22. Microscopic morphology of *Candida glabrata* on corn meal agar with Tween 80 shows elliptical shaped blastoconidia (A, 400× magnification; B, line diagram not to scale).
ANTIFUNGAL SUSCEPTIBILITY TESTING FOR YEASTS

Introduction: Documents of M27-A3 and M27-S3 published by Clinical Laboratory Standards Institute (CLSI; formerly National Committee for Clinical Laboratory Standards, NCCLS) is the current standard reference guide for antifungal susceptibility testing of pathogenic yeasts. FDA approved devices for antifungal susceptibility testing of yeasts includes Sensititre YeastOne Colorimetric Panel (Trek Diagnostic Systems Inc. Cleveland, OH) and Etest (AB BIODISK North America, Inc. Piscataway, NJ). The disk diffusion method approved by CLSI (M44-A) is another alternative for antifungal susceptibility testing of yeasts. There are 10 drugs in the antifungal susceptibility testing panel of NYSDOH Mycology Proficiency Test Program - amphotericin B, anidulafungin, caspofungin, flucytosine (5-FC), fluconazole, itraconazole, ketoconazole, micafungin, posaconazole, and voriconazole. The participating laboratories are allowed to select any number of antifungal drug(s) from the test panel based upon usual test practices in their facilities.

Materials & Results: Candida albicans M955 (S-1) was the analyte in the January 27, 2010 antifungal proficiency testing event. Thirty-one laboratories participated in this event. The S-1 isolate was validated by all the participating laboratories. The acceptable results for antifungal susceptibility testings were based on consensus MIC values or interpretation per NCCLS/CLSI guidelines or other publications (Table 2).

Table 2. Interpretive Guidelines for In Vitro Susceptibility Testing of Candida spp.*

<table>
<thead>
<tr>
<th>Antifungal Agent</th>
<th>Susceptible (S)</th>
<th>Susceptible-dose dependent (S-DD)</th>
<th>Intermediate (I)</th>
<th>Resistant (R)</th>
<th>Nonsusceptible (NS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B¹</td>
<td>≤2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>2</td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>≤2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>2</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>≤2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>2</td>
</tr>
<tr>
<td>Fluconazole²</td>
<td>≤8</td>
<td>16-32</td>
<td>8-16</td>
<td>≥64</td>
<td>-</td>
</tr>
<tr>
<td>Flucytosine (5-FC)</td>
<td>≤4</td>
<td>0.25-0.5</td>
<td>-</td>
<td>≥1</td>
<td>-</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>≤0.125</td>
<td>0.25-0.5</td>
<td>-</td>
<td>≥1</td>
<td>-</td>
</tr>
<tr>
<td>Ketoconazole³</td>
<td>≤2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>2</td>
</tr>
<tr>
<td>Micafungin</td>
<td>≤2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>>2</td>
</tr>
<tr>
<td>Posaconazole⁴</td>
<td>≤1</td>
<td>2</td>
<td>-</td>
<td>≥4</td>
<td>-</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>≤1</td>
<td>2</td>
<td>-</td>
<td>≥4</td>
<td>-</td>
</tr>
</tbody>
</table>

* Adapted from CLSI draft document M27-S3 (December 2007)

¹ For Amphotericin B, there are no breakpoints, but > 1 is considered resistant.

² Isolates of Candida krusei are assumed to be intrinsically resistant to fluconazole, and their MICs should not be interpreted using this scale.

³ For Ketoconazole, there is no assigned interpretative breakpoint.

⁴ For Posaconazole, apply the voriconazole MIC interpretation as surrogate breakpoints (susceptible, ≤1 μg/ml; susceptible-dose dependent, 2 μg/ml; resistant, ≥4 μg/ml). (Pfaller, M.A., Messer, S.A., Boyken, L., Tendolkar, S., Hollis, R.J., and Diekema, D.J. Selection of a surrogate agent (fluconazole or voriconazole) for initial susceptibility testing of posaconazole against Candida spp.: results from a global antifungal surveillance program. J. Clin. Microbiol. 2008: 46: 551-559.)
Table 3. Summary of Laboratory Performance, Antifungal Susceptibility Testing for Yeast Only, January 2010 PT Event

<table>
<thead>
<tr>
<th>Acceptable Responses/Total # Laboratories (%)</th>
<th>S- 1: Candida albicans M955</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B</td>
<td>26/26 (100)</td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>17/17 (100)</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>22/22 (100)</td>
</tr>
<tr>
<td>Flucytosine (5-FC)</td>
<td>25/25 (100)</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>32/32 (100)</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>22/29 (76%) Not validated</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>7/7 (100)</td>
</tr>
<tr>
<td>Micafungin</td>
<td>17/17 (100)</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>17/17 (100)</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>25/25 (100)</td>
</tr>
</tbody>
</table>

Table 4. Distribution of Antifungal MIC values (µg/ml) Reported by Participating Laboratories

S-1: Candida albicans M955

<table>
<thead>
<tr>
<th>Drugs (µg/ml)</th>
<th>Total # of labs</th>
<th>≤0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.19</th>
<th>0.25</th>
<th>0.38</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>≥64</th>
<th>≥128</th>
<th>≥256</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B</td>
<td>26</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>17</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Caspofungin</td>
<td>22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Flucytosine (5-FC)</td>
<td>24</td>
<td>1</td>
<td>9</td>
<td>12</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fluconazole</td>
<td>32</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Itraconazole</td>
<td>29</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>17</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Micafungin</td>
<td>17</td>
<td>1</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Posaconazole</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Voriconazole</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Distribution of Antifungal Susceptibility Interpretations Reported by Participating Laboratories

S-1: *Candida albicans M955*

<table>
<thead>
<tr>
<th>Antifungal Agent</th>
<th>Total # of labs</th>
<th>Susceptible</th>
<th>Susceptible-dose dependent</th>
<th>Intermediate</th>
<th>Resistant</th>
<th>Non-susceptible</th>
<th>No interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B</td>
<td>26</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caspofungin</td>
<td>22</td>
<td>19</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Flucytosine (5-FC)</td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluconazole</td>
<td>32</td>
<td>1</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itraconazole</td>
<td>29</td>
<td>2</td>
<td>18</td>
<td>2</td>
<td>7</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Micafungin</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>17</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>25</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANTIFUNGAL SUSCEPTIBILITY TESTING FOR MOLDS (EDUCATIONAL)

Introduction: Eight laboratories participated in this educational test event. The document of M38-A2 published by Clinical Laboratory Standards Institute (CLSI; formerly National Committee for Clinical Laboratory Standards, NCCLS), is the current standard reference guide for antifungal susceptibility testing of pathogenic molds. The following 10 drugs were included in the antifungal susceptibility testing panel of NYSDOH Mycology Proficiency Test Program - amphotericin B, anidulafungin, caspofungin, flucytosine (5-FC), fluconazole, itraconazole, ketoconazole, micafungin, posaconazole, and voriconazole.

Materials & Results: Aspergillus fumigatus M2039 was used. Laboratories were free to choose any number of drugs and preferred test method. Eight out of thirteen laboratories used CLSI Microdilution method, four laboratories used YeastOne Colorimetric method, and three laboratory used Etest. The acceptable range of MIC values are listed in the Table 6.

Discussion: This maiden event for antifungal susceptibility testing for molds was a success. Seven out of thirty laboratories, which hold antifungal susceptibility testing for yeasts permit, participated in this event. Six references laboratories were invited to perform this test as well. Acceptable results for antifungal susceptibility testing for molds were the consensus results for any single drug. All the participating laboratories except one reported the MIC values within the acceptable ranges for amphotericin B, 5-flucytosine, ketoconazole, posaconazole, and voriconazole, respectively. All the participating laboratories reported the MIC values within the acceptable ranges for fluconazole and itraconazole. The consensus values for anidulafungin, caspofungin, and micafungin could not be generated since too few laboratories tested for these drugs. There are no widely agreed breakpoints for molds although one group has proposed initial breakpoints for itraconazole, voriconazole, and posaconazole (Verweij, et al. 2009).

Future plan: Additional educational events will be offered to assess degree of consensus among participating laboratories for mold antifungal susceptibility testing.

Table 6. Acceptable range of MIC values for Mold Antifungal Susceptibility Educational Sample: Aspergillus fumigatus M2039.

<table>
<thead>
<tr>
<th>Acceptable Ranges of MIC (μg/ml) values</th>
<th>Educational specimen: Aspergillus fumigatus M2039</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B</td>
<td>0.25 – 1.0</td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>Not Available</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flucytosine (5-FC)</td>
<td>32 – 256</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>≥ 64</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>4 – 128</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>≥ 16</td>
</tr>
<tr>
<td>Micafungin</td>
<td>Not Available</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>0.5 – 2.0</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>0.5 – 2.0</td>
</tr>
</tbody>
</table>
Table 7. MIC (µg/ml) Values of Mold Antifungal Susceptibility Educational Sample: *Aspergillus fumigatus* M2039

<table>
<thead>
<tr>
<th>Drugs (µg/ml)</th>
<th>Total # of labs</th>
<th>0.015</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>≥8</th>
<th>≥16</th>
<th>≥32</th>
<th>≥64</th>
<th>≥128</th>
<th>≥256</th>
<th>≥512</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B</td>
<td>12</td>
<td></td>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>7</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Caspofungin</td>
<td>9</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Flucytosine (5-FC)</td>
<td>11</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluconazole</td>
<td>11</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itraconazole</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Micafungin</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Posaconazole</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Voriconazole</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Colors represent the testing method used:
- CLSI microdilution method
- YeastOne Colorimetric method
- Etest
- Multiple methods

Table 8. Distribution of Interpretation Reported by Participating Laboratories for Mold Antifungal Susceptibility Educational Sample: *Aspergillus fumigatus* M2039

<table>
<thead>
<tr>
<th>Antifungal Agent</th>
<th>Total # of labs</th>
<th>Susceptible</th>
<th>Intermediate</th>
<th>Resistant</th>
<th>No interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphotericin B</td>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Anidulafungin</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Flucytosine (5-FC)</td>
<td>11</td>
<td></td>
<td>3</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>12</td>
<td></td>
<td>3</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>11</td>
<td></td>
<td>4</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Micafungin</td>
<td>6</td>
<td>1</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

Based upon yeast interpretation.
Further Reading:

DIRECT DETECTION (CRYPTOCOCCUS NEOFORMANS ANTIGEN TEST)

Introduction: A simple, sensitive latex test capable of detecting the capsular polysaccharide of *C. neoformans* in CSF and serum was described, and proven to be superior in sensitivity to the India ink mount (1, 2). Clinical studies established the prognostic value of the test (4, 6, 7 and 8), and showed it to be a valuable aid in establishing a diagnosis when culture was negative (5). Paired serum and CSF specimens allowed detection of antigen in confirmed cases (8). Parallel serologic studies for both antigen and antibody are recommended to ensure detection of extrameningeal cryptococcosis. Newly emerging disease states and therapies have been shown to increase the opportunity for nonspecific interference in some serum specimens. Pretreatment of serum specimens with pronase prior to utilization of the latex agglutination test reduces nonspecific interference, and enhances the detection of capsular polysaccharide antigens of *Cryptococcus neoformans*.

Materials & Methods: Seventy laboratories participated in the January 27, 2010 direct detection antigen testing event. Two positive serum samples for cryptococcal antigen were included. The titers were 1:64 and 1:32 for Cn-Ag-1 and Cn-Ag-2 respectively. One positive synthetic CSF sample for cryptococcal antigen was distributed as an educational specimen labeled as Cn-Ag-Edu. The titer was 1:64. Titers within ± 2 dilutions of the reference and/or consensus results were the acceptable results for this event.

Results: The performance of 70 laboratories was satisfactory in this test event. One laboratory reported the titer of specimen Cn-Ag-1 lower than the acceptable titer range and four laboratories reported the titer higher than the acceptable titer range. One laboratory reported the titer of specimen Cn-Ag-2 lower than the acceptable titer range and two laboratories reported the titer higher than the acceptable titer range. The synthetic CSF specimen was the first time introduced in the proficiency test. All the participating laboratories were reported it qualitatively. The majority laboratories reported the titer as 1:64 or 1:128. Two laboratories reported the titer of this specimen lower than the acceptable range and four laboratories reported the titer higher than the acceptable range. The supplementary information on quantitative assays on *Cryptococcus neoformans* antigen test is summarized in Table 9.

Further Reading:
7. Kaufman, L. and Blumer, S. 1968. Value and interpretation of serological tests for the

Table 9. Summary of quantitative assay

The number of laboratories that reported titers is listed for positive test samples Cn-Ag-1, Cn-Ag-2, and Cn-Ag-Edu.

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample</th>
<th>Cn-Ag-1 Titers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total # of laboratories</td>
<td>4</td>
</tr>
<tr>
<td>EIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Meridien Diagnostic)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Latex Agglutination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Immuno-Mycologics)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(Meridien Diagnostic)</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>(Remel)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(Wampole)</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample</th>
<th>Cn-Ag-2 Titers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total # of laboratories</td>
<td>4</td>
</tr>
<tr>
<td>EIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Meridien Diagnostic)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Latex Agglutination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Immuno-Mycologics)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Meridien Diagnostic)</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>(Remel)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(Wampole)</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Sample</th>
<th>Cn-Ag-Edu Titers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total # of laboratories</td>
<td>4</td>
</tr>
<tr>
<td>EIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Meridien Diagnostic)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Latex Agglutination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Immuno-Mycologics)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Meridien Diagnostic)</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>(Remel)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(Wampole)</td>
<td>16</td>
</tr>
</tbody>
</table>
1. American Type Culture Collection
 (http://www.atcc.org/)
2. Agricultural Research Service Culture
 Collection, USDA
 (http://nrrl.ncaur.usda.gov/)
 Sporulating in Pure Culture. 3rd ed. J. Cramer,
 Vaduz, Germany.
 Medical Mycology and Human Mycoses.
 Star Publishing Company.
 Illustrated Genera of Imperfect Fungi. 4th ed.
 Yeasts: Characteristics and Identification.
 3rd ed. Cambridge University Press, UK.
 Hyphomycetes from Soil. Williams and
 Wilkins Co.
8. Carmichael, J.W., Kendrick, W.B., Conners,
 I.L., Sigler, L. 1980. Genera of
 Hyphomycetes. University of Alberta Press,
 Edmonton.
9. The Centraalbureau voor Schimmelcultures
 (CBS) Fungal Biodiversity Centre
 (http://www.cbs.knaw.nl/About/)
10. De Hoog, G.S., Guarro, J., Gene, J., and
 2nd ed. Centraalbureau voor
 Schimmelcultures, Utrecht, The
 Netherlands.
11. Domsch, K.H., Gams, W., Anderson, T.H.
 1980. Compendium of Soil Fungi, Vols. 1
 Hyphomycetes. Commonwealth Mycological
 Institute, Kew, Surrey, England.
 Hyphomycetes. Commonwealth Mycological
 Institute, Kew, Surrey, England.
 Fundamentals of Diagnostic Mycology. W.B.
 Saunders Company, Philadelphia.
 2nd ed. Iowa State University Press, Ames,
 Iowa.
 Davis Company, Philadelphia.
16. Hamlin, R. 1990. Illustrated Genera of
 Ascomycetes. APS press. The American
 Minnesota.
17. Japan Collection of Microorganisms
 (http://www.jcm.riken.go.jp/)
 Hyphomycetes. In Ainsworth GC Sparrow
 Mycology – A Self-Instructional Text. 2nd ed.
 F.A. Davis, Philadelphia.
 Deuteromycetes – Mitosporic Fungi,
 Classification and Generic Keys. Science
 Publishers Inc. U.S.A.
 Aspergillus species. 1st ed. Centraalbureau
 voor Schimmelcultures, Utrecht, The
 Netherlands.
 Yeasts, a taxonomic study. 4th ed. Elsevier,
 New York, NY.
 Medical Mycology. Lea & Febiger,
 Philadelphia.
 Fungi – A Guide to Identification. 4th ed,
 ASM Press, Washington, D.C.
 of Medical Mycology. Academic Press, New
 York.
26. Murray, P.R., Baron, E.J., Pfaller, M.A.,
 Clinical Microbiology. 8th ed. ASM Press,
 Washington, D.C.
27. New York State Department of Health
 Mycology Proficiency Testing Program
Yeasts/Molds Master List and Instructions.

 Genus *Aspergillus*. Robert E. Krieger
 Publishing Company, Huntington, New
 York.

 Dermatophytes - Their Recognition and
 Identification. University of Miami Press,
 Coral Gables, FL.

 Pathogenic Fungi and the Pathogenic
 Actinomycetes. W.B. Saunders Company,
 Philadelphia.

31. Noel, R. Rose, N.R., Hamilton, R.G., and
 Laboratory Immunology. 6th ed. ASM Press,
 Washington, D.C.

 Identifying Filamentous Fungi – A Clinical
 Laboratory Handbook. Star Publishing
 Company.

33. Sutton, D.A., Fothergill, A.W., and Rinaldi,
 Fungi. Williams and Wilkins, A Waverly
 Company, Baltimore.

34. Tournu, H., Serneels, J., and Van Dijck, P.
 2005. Fungal pathogens research: novel and
 improved molecular approaches for the
 discovery of antifungal drug targets. *Curr

35. The United Kingdom National Culture
 Collection UKNCC
 (http://www.ukncc.co.uk/html/Databases/search.asp)

36. University of Alberta Microfungus
 Collection
 (http://www.devonian2.ualberta.ca/uamh/)