Introduction

- The 3 National Influenza Reference Centers (NIRCs) were established in 2009 as a surveillance support network to the Centers for Disease Control and Prevention (CDC).
- The current 3 U.S. NIRCs are:
 - Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA
 - Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, Wisconsin, USA
 - Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- The goal of the NIRCs is to inform influenza virologic surveillance in the United States (US).
- In recent years, surveillance testing at the NIRCs has increasingly focused on next generation sequencing (NGS) for genomic analysis.

Methods

- US PHLs submit representative influenza-positive specimens to assigned NIRCs biweekly (Figure 1) according to Right Size specimen submission guidance.
- NIRC influenza specimen workflow Figure 2: Viruses are cultured and aliquots are sent to CDC for further testing.
- NIRC NGS workflow Figure 3: A portion of the original specimen is used for genomic sequencing with NGS.
- Sequences are analyzed and curated through an integrated genome assembly pipeline within a cloud infrastructure and transmitted through secure channels to the CDC for further analysis.

Figure 1. Geographic Distribution of NIRC and Representative PHLs

Figure 2. NIRC Influenza Specimen Workflow

Figure 3. NIRC NGS Workflow

Results

- Implementation of the NGS pipeline was initiated in the NIRCs during the 2014-15 influenza season.
- Since then, full genome data from 8,600 influenza samples has been generated from the NIRCs, transmitted to CDC, analyzed and contributed to public databases.
- NIRC NGS summary data from the 2018-2019 influenza season is depicted in Figure 4.
- Average turn-around time from specimen receipt at the NIRC to sequence transmission to CDC, is 13 days.
- Numerous viral changes have been detected, including influenza A/H3 3C.2a and 3C.3a clade emergence (Figure 5), HA codon deletions in B/victoria viruses, reassortants, neuraminidase variants that impacted fitness and drug resistance, and RNA polymerase analysis for assessment of new drug targets.

Figure 4. NIRC NGS Summary Data 2018-2019 Influenza Season

Figure 5. NIRC Sequenced Specimens by Genetic Group Designation

Conclusion

- The use of NGS facilitates the global analysis of influenza virus genomic changes in a single, high-resolution data set, enabling timely intervention strategies and improved data availability for vaccine strain selection.
- Advances in methods and platforms have enabled its application for systematic influenza surveillance and implementation at coordinated reference centers in the US, resulting in the rapid detection of evolutionary trends in circulating viruses.

Works Cited and Disclosure

1 Wadsworth Center, New York State Department of Health, Albany, New York, USA
2 Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
3 Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, Wisconsin, USA
4 Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA
5 Association of Public Health Laboratories, Silver Spring, MD, USA

Disclosure: This project was supported by the Cooperative Agreement Number 5NU60OE000103, funded by the Centers for Disease Control and Prevention through the Association of Public Health Laboratories. The Cooperative Agreement is funded through the United States Department of Homeland Security, Science and Technology Directorate, Public Health Research Program. The opinions expressed by the authors appearing in this document do not necessarily reflect the official views of the Centers for Disease Control and Prevention, the Department of Homeland Security, or the Association of Public Health Laboratories.